
REST

Mike Amundsen

@mamund

amundsen.com

And now for something

completely different…

Preliminaries

• Mike Amundsen

• Developer, Architect, Presenter

• Hypermedia Junkie

• “I program the Internet”

• Designing Hypermedia APIs
with Node and HTML5
O’Reilly, Fall 2011

And now for something

a completely different…

“Excuse me ...

did you say ‘knives'?”

 City Gent #1 (Michael Palin)

The Architects Sketch

“Consider how often we see

software projects begin with

adoption of the latest fad in

architectural design, and only

later discover whether or not the

system requirements call for such

an architecture”

 Roy T. Fielding, 2000

“Consider how often we see

software projects begin with

adoption of the latest fad in

architectural design, and only

later discover whether or not the

system requirements call for such

an architecture”

 Roy T. Fielding, 2000

“Consider how often we see

software projects begin with

adoption of the latest fad in

architectural design, and only

later discover whether or not the

system requirements call for such

an architecture”

 Roy T. Fielding, 2000

Representational

State

Transfer

Representational

State

Transfer

These are….?

REST

is a

style

REST

is a

style

of

software

architecture.

In contrast to…

HTTP

is a

Standard

HTTP

is a

Standard

Transfer

Protocol

!=

REST != HTTP

Well then, what IS REST?

Roy T. Fielding, 2000

“REST is a coordinated set of

architectural constraints that

attempts to minimize latency

and network communication

while at the same time

maximizing the independence

and scalability of component

implementations.”

Roy T. Fielding, 2000

“REST is a coordinated set of

architectural constraints that

attempts to minimize latency

and network communication

while at the same time

maximizing the independence

and scalability of component

implementations.”

Roy T. Fielding, 2000

“REST is a coordinated set of

architectural constraints that

attempts to minimize latency

and network communication

while at the same time

maximizing the independence

and scalability of component

implementations.”

Roy T. Fielding, 2000

“REST is a coordinated set of

architectural constraints that

attempts to minimize latency

and network communication

while at the same time

maximizing the independence

and scalability of component

implementations.”

Roy T. Fielding, 2000

“REST attempts to …

minimize latency while

maximizing scalability”

Roy T. Fielding, 2000

Srsly?

But some people say…

REST IS…

• Crafting URIs

• Identifying Resources

• Designing Responses (JSON, XML, etc.)

• HTTP Verbs (GET, PUT, POST, DELETE)

• Headers (Caching, etc.)

• HTTP Response Codes (200, 404, 418, etc.)

REST IS…

• Crafting URIs

• Identifying Resources

• Designing Responses (JSON, XML, etc.)

• HTTP Verbs (GET, PUT, POST, DELETE)

• Headers (Caching, etc.)

• HTTP Response Codes (200, 404, 418, etc.)

Actually…

REST IS NOT…

• Crafting URIs

• Identifying Resources

• Designing Responses (JSON, XML, etc.)

• HTTP Verbs (GET, PUT, POST, DELETE)

• Headers (Caching, etc.)

• HTTP Response Codes (200, 404, 418, etc.)

REST IS NOT…

• Crafting URIs

• Identifying Resources

• Designing Responses (JSON, XML, etc.)

• HTTP Verbs (GET, PUT, POST, DELETE)

• Headers (Caching, etc.)

• HTTP Response Codes (200, 404, 418, etc.)

REST IS NOT…

• Crafting URIs

• Identifying Resources

• Designing Responses (JSON, XML, etc.)

• HTTP Verbs (GET, PUT, POST, DELETE)

• Headers (Caching, etc.)

• HTTP Response Codes (200, 404, 418, etc.)

REST IS NOT…

• Crafting URIs

• Identifying Resources

• Designing Responses (JSON, XML, etc.)

• HTTP Verbs (GET, PUT, POST, DELETE)

• Headers (Caching, etc.)

• HTTP Response Codes (200, 404, 418, etc.)

But really, what is REST?

A set of constraints.

Another example…

Charles Eames

 "I have never been

forced to accept

compromises but I have

willingly accepted

constraints."

Charles Eames,

Eames Design, 1989

 "I have never been

forced to accept

compromises but I have

willingly accepted

constraints."

Charles Eames,

Eames Design, 1989

 "I have never been

forced to accept

compromises but I have

willingly accepted

constraints."

Charles Eames,

Eames Design, 1989

Why constraints?

Is

there

anything

more

intimidating…?

OK, what are

REST’s constraints?

There are six

REST

constraints…

Client-Server

Not Peer-to-Peer

Stateless

No Server-Side Session

Cache

Don’t hit server every time

Uniform Interface

Same API for everyone

Layered System

Add hardware any time

Code On Demand *

Don’t hard-code clients, send code to them.

REST’s Constraints

1. Client-Server

2. Stateless

3. Cache

4. Uniform Interface

5. Layered System

6. Code on Demand

Wait, that’s it?

 Well…

 "[REST] is achieved by

placing constraints on

connector semantics where

other styles have focused

on component semantics."

Roy T. Fielding, 2000

 "[REST] is achieved by

placing constraints on

connector semantics where

other styles have focused

on component semantics."

Roy T. Fielding, 2000

 "[REST] is achieved by

placing constraints on

connector semantics where

other styles have focused

on component semantics."

Roy T. Fielding, 2000

Connector != Component

Component

• Database

• File System

• Message Queue

• Transaction Manager

• Source Code

Component == Private

Connector

• Web Server

• Browser Agent

• Proxy Server

• Shared Cache

Connector == Public

Client Server
Connectors

Components

The Web

And the best way to

ensure

Connectors

work together is…

Uniform Interface

1. Identification of Resources

2. Resource Representations

3. Self-Descriptive Messages

4. Hypermedia

Uniform Interface

1. Identification of Resources (URIs)

2. Resource Representations

3. Self-Descriptive Messages

4. Hypermedia

Uniform Interface

1. Identification of Resources (URIs)

2. Resource Representations (Media-Types)

3. Self-Descriptive Messages

4. Hypermedia

Uniform Interface

1. Identification of Resources (URIs)

2. Resource Representations (Media-Types)

3. Self-Descriptive Messages (Header+Body)

4. Hypermedia

Uniform Interface

1. Identification of Resources (URIs)

2. Resource Representations (Media-Types)

3. Self-Descriptive Messages (Header+Body)

4. Hypermedia (Links & Forms)

URIs

“A Uniform Resource Identifier (URI)

is a compact string of characters for

identifying an abstract or physical

resource.”

RFC2396 – URI Generic Syntax

URIs

“A Uniform Resource Identifier (URI)

is a compact string of characters for

identifying an abstract or physical

resource.”

RFC2396 – URI Generic Syntax

MIME Media Types

“Specify the nature of the data in the body

of a MIME entity and auxiliary

information that may be required for

certain media types.”

RFC2046 – MIME Media Types

MIME Media Types

“Specify the nature of the data in the body

of a MIME entity and auxiliary

information that may be required for

certain media types.”

RFC2046 – MIME Media Types

Header + Body

“Message[s] consist of a start-line, zero or
more header fields (also known as "headers"),

an empty line (i.e., a line with nothing
preceding the CRLF) indicating the end of
the header fields, and possibly a message-

body.”

RFC2616 – Hypertext Transfer Protocol

HTTP/1.1

Header + Body

“Message[s] consist of a start-line, zero or
more header fields (also known as "headers"),

an empty line (i.e., a line with nothing
preceding the CRLF) indicating the end of
the header fields, and possibly a message-

body.”

RFC2616 – Hypertext Transfer Protocol

HTTP/1.1

Links & Forms

“Hypermedia is defined by the presence of

application control information embedded

within, or as a layer above, the

presentation of information.”

Roy. T. Fielding, 2000

Links & Forms

“Hypermedia is defined by the presence of

application control information embedded

within, or as a layer above, the

presentation of information.”

Roy. T. Fielding, 2000

Seems kinda complicated…

REST in one slide

Read the dissertation, really!

Client Server
Connectors

Components

The Web

Component Connector Connector Component

“Those of us who have been trained

as architects have this desire perhaps

at the very center of our lives: that

one day, somewhere, somehow, we

shall build one building which is

wonderful, beautiful, breathtaking, a

place where people can walk and

dream for centuries.”

Christopher Alexander,

The Timeless Way of Building - 1979

“Those of us who have been trained

as architects have this desire perhaps

at the very center of our lives: that

one day, somewhere, somehow, we

shall build one building which is

wonderful, beautiful, breathtaking, a

place where people can walk and

dream for centuries.”

Christopher Alexander,

The Timeless Way of Building - 1979

“Those of us who have been trained

as architects have this desire perhaps

at the very center of our lives: that

one day, somewhere, somehow, we

shall build one building which is

wonderful, beautiful, breathtaking, a

place where people can walk and

dream for centuries.”

Christopher Alexander,

The Timeless Way of Building - 1979

“Those of us who have been trained

as architects have this desire perhaps

at the very center of our lives: that

one day, somewhere, somehow, we

shall build one building which is

wonderful, beautiful, breathtaking, a

place where people can walk and

dream for centuries.”

Christopher Alexander,

The Timeless Way of Building - 1979

So…

“Excuse me ...

did you say ‘knives'?”

 City Gent #1 (Michael Palin)

The Architects Sketch

REST

Mike Amundsen

@mamund

amundsen.com

